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The Quest

There are two very common questions related to math problem solving. One of
them is asked at the very beginning of the process:

“How do I even start to solve this problem?”
And the other one comes after the solution is revealed:

“How was I supposed to come up with this solution?”

* * *
Now allowme to describe something called “The Problem Solving Quest”...

a more colloquial name for it would be “Crossing the Swamp”.1

It is a useful way to describe and to visually present the process of math
problem solving.

Imagine yourself standing in the middle of a large foggy swamp. You are on
firm ground, on one of the little islets or mounds of dry land randomly scattered
around the swamp.

There is an obvious goal, an objective that you are trying to achieve—you
want to get out of the swamp, to reach the edge of the swamp, the dry land. If
you are a fan of computer games, you can think of yourself as a computer game
character playing some sort of a quest or a strategy game.

1 The readers are highly encouraged to come up with other names which sound better in their native

language.
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There are many useful analogies between this game and the process of prob-
lem solving. If you can see the nearest islets, then you can start jumping from
one to another, trying to get closer to the target. Perhaps you can see that target,
so you can immediately devise a plan; or perhaps it’s too far away and you start
moving in that general direction but without clear strategy.

Or you might find yourself in a situation when the next islet is too far and
you simply can neither jump nor wade through the swamp to reach it. Then you
need to make a decision: do I need this jump, or should I go back and try some
other route?

And indeed, quite often you have to abandon your current approach and
return back to one of the previous stages of your quest, where you can gather
your thoughts, evaluate your experience and decide what to do next.
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Only your experience will guide you to the right answer. And if you know
that this jump is necessary but cannot make it on your own, then you need help.
That help can be a tool (plank of wood, a long pole, stilts), or it can be some skill
(learning how to jump higher and further, or how to see better through the fog).

Sometimes getting to the next islet is easy—perhaps there is a log connecting
them, and you just need to walk on that log.

There are many, many analogies between the Swamp Quest and the process
of solving a complicated problem. It can also be likened to climbing a mountain,
exploring a cave system, or navigating a labyrinth—only your imagination is the
limit.

Of course, not every problem can be immediately split into smaller steps.
This also takes skill and experience, and sometimes, a stroke of luck.

In this article we use the set of questions surrounding one specific difficult
problem, illustrating the Swamp Quest analogy as we go.
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Problem Set #1

In this text we will deal with finite collections (ormultisets) of numbers. Hope-
fully, you already know what a collection is, but just in case, I want to emphasize
the only difference between a collection and a set—a collection is allowed to
contain several identical (equal) elements. When we write out a collection, we
usually group the equal elements together.

This is a set: 𝐴 = {1,−2.777, 𝜋, 2024}.

This is a collection: 𝐴 = {1, 1,−2.777, 𝜋, 𝜋, 𝜋, 2024}.

It is important to remember that when we talk about sets or collections, there
is no fixed order. So collection {1, 2, 4, 17, 17} is the same as {17, 4, 1, 17, 2}.

{1, 2, 4, 17, 17} = {17, 4, 1, 17, 2}

Note. Collections are sometimes also called bags or msets.

* * *
Wewill begin first with a series of relatively simple problems. Their difficulty

will gradually increase.
The first one is very easy.

A.1. Mathematician had three numbers. She computed all three of their
pairwise sums and obtained a collection of three numbers {3, 4, 9}. What are the
original three numbers?

Answer: A quick investigation shows that the original numbers are −1, 4
and 5. We will skip the proof leaving it to you as an easy exercise. ■

The dry land is very close. You don’t even have to jump, just
a simple step through the muddy water and you are there!

Now, the obvious generalization of this question is:

A.2. From collection of three numbers 𝑎, 𝑏, and 𝑐we produced the collection
of three possible pairwise sums: namely, 𝑥 = 𝑎+ 𝑏, 𝑦 = 𝑏+ 𝑐, and 𝑧 = 𝑎+ 𝑐.

{𝑎, 𝑏, 𝑐} −→ {𝑥, 𝑦, 𝑧} = {𝑎+ 𝑏, 𝑏+ 𝑐, 𝑐+ 𝑎} .

https://en.wikipedia.org/wiki/Multiset
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Can this operation be reversed? In other words, if we know the collection
{𝑥, 𝑦, 𝑧}𝑧, then can we uniquely determine (restore) the original numbers 𝑎, 𝑏, 𝑐
(as a collection, of course)?

Answer: Obviously, yes. Simply add together all the three given sums 𝑎+ 𝑏,
𝑏+ 𝑐, and 𝑎+ 𝑐, obtaining the result which equals 2(𝑎+ 𝑏+ 𝑐):

𝑥+ 𝑦 + 𝑧 = (𝑎+ 𝑏) + (𝑏+ 𝑐) + (𝑐+ 𝑎) = 2(𝑎+ 𝑏+ 𝑐) .

Thus, by dividing 𝑥 + 𝑦 + 𝑧 by two, we can calculate the sum 𝜎 = 𝑎 + 𝑏 + 𝑐.
Now, subtracting pairwise sums 𝑥, 𝑦, and 𝑧 from 𝜎, obviously, produces original
numbers 𝑎, 𝑏, and 𝑐. ■

It is very important to emphasize that given the collection {𝑥, 𝑦, 𝑧}we do not
know which of these three numbers represents which pairwise sum of the three
original numbers. Please recall that there is no assigned order of the elements in
a collection.

This time the dry land was also quite close.
One longer step and the quest is over!

Now, for the next step, we increase the size of the collection.

A.3. A collection of five numbers is given. The collection of ten possible
pairwise sums of these numbers is

{5, 7, 8, 9, 10, 12, 13, 14, 16, 18} .

Find the original numbers.
Answer: {2, 3, 5, 7, 11}. Hint. Start with computing the sum of five original

numbers—the result is 28. Since 5, obviously, is the sum of the two smallest
original numbers, and 18 is the sum of the two largest ones, the middle number
in the original collection must be equal to 28− 5− 18 = 5. ■

This time a real jump is required. But the swamp shoreline is
always in sight, so it is easy to understand what has to be done.

A.4. Professor Smith wrote five numbers on five red cards. Then he took
ten blue cards and wrote on them all ten possible pairwise sums of the original
numbers.

{𝑎, 𝑏, 𝑐, 𝑑, 𝑒} −→ {𝑎+ 𝑏, 𝑎+ 𝑐, . . . , 𝑐+ 𝑒, 𝑑+ 𝑒} .
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He then shuffled the ten blue cards and gave them to Professor Jones. From this
deck of cards can Jones determine the original five numbers?

Answer. Yes, he can. Denote the numbers by 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒. For simplicity
sake, and without loss of generality, assume that

𝑎 ⩽ 𝑏 ⩽ 𝑐 ⩽ 𝑑 ⩽ 𝑒 .

As before, Jones begins with computing the sum of the original collection, 𝜎 =
𝑎+ 𝑏+ 𝑐+ 𝑑+ 𝑒. This will allow Jones to find number 𝑐.

𝑐 = 𝜎 − (𝑎+ 𝑏)− (𝑑+ 𝑒) .

Since he knows that the second smallest number is equal to 𝑎 + 𝑐, he can
determine 𝑎. Similarly, he determines number 𝑒. The next step is to find number
𝑏 from knowing the sum 𝑎+𝑏, and similarly, finding the value of 𝑑 from knowing
the sum 𝑑+ 𝑒. ■

The first jump is more or less the same as before. However, then
we need a different approach—like using a long wooden plank.

A.5. A collection of four numbers is given. This collection has six possible
pairwise sums, and they are

{3, 4, 5, 7, 8, 9} .

Find the original numbers.
Answer: Alas, this timewe run into a problem. Quick computationwill show

that the original collection is either {1, 2, 3, 6} or {0, 3, 4, 5}. So this operation
of producing the collection of pairwise sums cannot be uniquely reversed. ■

Proving that something cannot be done is
also a solution. The result is not what we ex-
pected, but that happens in real life as well.

A.6. Student wrote down four numbers. He then computed all six pairwise
sums of these numbers, and they are

{1, 3, 6, 7, 10, 13} .
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Find the original numbers.
Answer: This one is even worse. The student must have made a mistake in

his computations, because such a four-number collection simply does not exist.
Indeed, if the original collection is

𝑎 ⩽ 𝑏 ⩽ 𝑐 ⩽ 𝑑 ,

then the collection of pairwise sums is

𝑎+ 𝑏 ⩽ 𝑎+ 𝑐 ⩽ . . . ⩽ 𝑏+ 𝑑 ⩽ 𝑐+ 𝑑 .

This means that the sum of the smallest and the largest pairwise sums equals

(𝑎+ 𝑏) + (𝑐+ 𝑑) = 𝑎+ 𝑏+ 𝑐+ 𝑑 .

The same must be true about the second smallest and the second largest pairwise
sums

(𝑎+ 𝑐) + (𝑏+ 𝑑) = 𝑎+ 𝑏+ 𝑐+ 𝑑 .

But in the six-number collection we are given here the sum of the smallest and
the largest elements equals 1 + 13 = 14, while the sum of the second smallest
and the second largest numbers is 3 + 10 = 13. ■

Looking for examples and counterexamples is similar to
exploring what lies around you. Almost like drawing
a map of the swamp (or at least of some portion of it).

A.7. Is it ever possible to restore (recover) a collection of four numbers, given
the collection of their six pairwise sums?

Hint. Consider a six-number collection such as

{1, 1, 1, 1, 1, 1} or {3, 5, 6, 6, 7, 9} .

This time, because you already have
a map, navigating the swamp is easy.
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Moser’s Problem

In 1957 Canadian mathematician Leo Moser submitted a small and quite elemen-
tary question to the American Mathematical Monthly magazine. It consisted of
two items more or less identical to our problems A.2, A.4 and A.7 above.

However, in the solution to the problem he formulated its obvious general-
ization and posed the following question

Moser’s Problem. From any collection 𝐴 of 𝑛 numbers we
can generate the collection of 𝑛(𝑛 − 1)/2 pairwise sums
of the collection’s elements, which we will denote by 𝐴(2).
Is that operation reversible? In other words, given the
collection 𝐴(2), is it always possible to restore collec-
tion 𝐴? Or, in more formal language, is it true that

∀𝐴,𝐵 𝐴(2) = 𝐵(2) ⇒ 𝐴 = 𝐵 ?

Let us call number 𝑛 singular if the above statement is false. We already
know that number 4 is singular (so is, obviously, 𝑛 = 2). Also 3 and 5 are not
singular.

This could give us a hint that the answer to Moser’s Problem is determined
by the parity of 𝑛: that is, if 𝑛 is odd, then we can indeed recover the original
collection from the collection of its pairwise sums; and if 𝑛 is even, then it can
be impossible.

Question. Is it true that number 𝑛 > 1 is singular if and only if 𝑛 is even?

The following problem (once you prove it) answers that question.

B.1. Prove that it is always possible to recover a collection of six numbers,
given the collection of their fifteen pairwise sums.

Now, this problem is not as easy as the one for 𝑛 = 5 but it is still possible to
solve it using elementary approach.

This one requires several jumps. However, they are
relatively easy because you have done them all be-

fore. You just need to figure out the jump sequence—
find the first islet to jump to, then the next, etc.
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However, for larger values of 𝑛 it becomes more and more difficult to find
the answer to Moser’s Problem. Still, some results can be proved via elementary
means.

B.2. If number 𝑛 is singular, then 2𝑛 is singular as well.

This time, the jumps are still not very compli-
cated, but there are several of them. Also one
or two of those jumps can be more difficult.

This proves that all powers of two are singular numbers. Finally, we have the
following fact, which presents the complete solution to the Moser’s Problem.

B.3. Number 𝑛 > 1 is singular if and only if 𝑛 is a power of two.

This is tough. Simple jumps are not enough, and
all of your previous inventions and techniques are
not helping. As a matter of fact, we cannot even
see the next islet. Where do we jump and how?

Alas, the easy and elementary methods now become insufficient. This ques-
tion cannot be solved by means which lie within the margins of the high school
curriculum.



11 Math Problem Solving as a Quest

Solving the Moser’s Problem

Let us stare at the problem for a little while. It is very likely that at some point
your thoughts went like this:

How wonderful it would be if we knew which pair of numbers was actually
added together to provide each specific sum!

For instance, what if we knew, for example, that the fifth number in the
𝐴(2) collection was precisely the sum of the second and the third numbers in
collection 𝐴, and so on.

But... we do not know that. The numbers we have do not form an ordered
sequence, they form a collection, where its elements can be shuffled around in
any way, by any permutation. And here we get stuck... unless we find some way
to deal with collections. Perhaps we read something or learned some areas of
mathematics where a collection of numbers (without any order, andwith possible
repetitions) is often encountered.

Only your previous experience, as well as the toolkit (set of skills) that you
have under your belt, can come to your help here.

First of all, let us learn from our previous experience—i.e., from solving the
simpler versions of this problem. Almost in all of them we have computed the
sum of all the numbers we have at our disposal; that is, we have added up all the
pairwise sums of the original numbers.

What is so special about this operation? If you think about it, it should become
obvious—the sum of several numbers is an operation that does not depend on
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the order (or arrangement) of these numbers, but only depends on the entire set
(to be more, precise, on the collection of the numbers).

So, if, for instance, we have the collection of six pairwise sums 𝑠1, . . . , 𝑠6 of
some four unknown numbers, we can compute their sum

𝑓(𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6) = 𝑠1 + 𝑠2 + · · ·+ 𝑠6 .

We can also compute their product 𝑠1𝑠2 · · · 𝑠6, or the sum of their squares

𝑔(𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6) = 𝑠21 + 𝑠22 + · · ·+ 𝑠26 ,

or, more generally, any expression which is symmetric with respect to these
six numbers, meaning that you rearrange these numbers in any order it turns
into itself. For those of you familiar with functions, we are talking here about
functions of six variables which do not change their values when their arguments
are rearranged. For example, we would have equalities like these:

𝑓(𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6) = 𝑓(𝑠3, 𝑠1, 𝑠6, 𝑠5, 𝑠2, 𝑠4) = 𝑓(𝑠5, 𝑠2, 𝑠4, 𝑠1, 𝑠6, 𝑠3) = . . .

Simplest symmetric functions are algebraic expressions, the so-called sym-
metric polynomials. Here are several examples of them for two, three, or four
variables (denoted by 𝑥, 𝑦, 𝑧, and 𝑡):

𝑓(𝑥, 𝑦) = 𝑥+ 𝑦

𝑔(𝑥, 𝑦) = 𝑥𝑦

ℎ(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑥3 + 𝑦3 + 𝑧3 + 𝑡3

𝑞(𝑥, 𝑦, 𝑧, 𝑡) = 𝑥𝑦 + 𝑥𝑧 + 𝑥𝑡+ 𝑦𝑧 + 𝑦𝑡+ 𝑧𝑡

So instead of dealing with a collection of numbers, we could investigate some
symmetric functions computed for this collection.

Second, we need some tools that will allow us to perform such an investiga-
tion.

So let us hope that at some point in your recent past you have learned about
polynomials and their roots. Otherwise you really have no chance to solve this
problem.

You would have to be a genius of Euclid’s or Euler’s magnitude to come
up with the following ideas by yourself, without at least basic familiarity with
polynomials and permutations.

https://en.wikipedia.org/wiki/Symmetric_polynomial
https://en.wikipedia.org/wiki/Symmetric_polynomial


13 Math Problem Solving as a Quest

So, from our experience with polynomials, we can recall that the collection
of numbers 𝐴 = {𝑎𝑘} can be represented by one object—namely, by monic
polynomial2 whose roots are the elements of 𝐴.

For instance, if we have a collection of, say, three numbers

𝐴 = {𝑎1, 𝑎2, 𝑎3} = {−1, 2, 5} ,

then we can construct polynomial

𝑓𝐴(𝑥) = (𝑥− 𝑎1)(𝑥− 𝑎2)(𝑥− 𝑎3) =

(𝑥+ 1)(𝑥− 2)(𝑥− 5) = 𝑥3 − 6𝑥2 + 3𝑥+ 10 .

In exactly the same manner, for any multiset 𝐴 = {𝑎1, . . . , 𝑎𝑛} of 𝑛 numbers
we can construct polynomial

𝑓𝐴(𝑥) = (𝑥− 𝑎1)(𝑥− 𝑎2) · · · (𝑥− 𝑎𝑛) .

We found a useful tool (or a gadget, call it whatever you
like) that allows us to transform our problem into a differ-
ent one by replacing the collection 𝐴 of numbers with the
polynomial whose roots form this collection. Thus we have
moved to another island in the swamp... in hope that it

will be easier to reach the dry land from this new location.

The coefficients of that polynomials, when expressed as functions of collec-
tion 𝐴, are the so-called elementary symmetric polynomials of variables 𝑎𝑖:

𝜀1(𝑎1, 𝑎2, . . . , 𝑎𝑛) = 𝑎1 + 𝑎2 + · · ·+ 𝑎𝑛 ,

𝜀2(𝑎1, 𝑎2, . . . , 𝑎𝑛) = 𝑎1𝑎2 + 𝑎1𝑎3 + · · ·+ 𝑎𝑛−1𝑎𝑛 ,

. . .

𝜀𝑛(𝑎1, 𝑎2, . . . , 𝑎𝑛) = 𝑎1𝑎2 · · · 𝑎𝑛 ,

where 𝜀𝑘(𝑎1, 𝑎2, . . . , 𝑎𝑛) is the sum of all possible products of some 𝑘 different
variables out of {𝑎1, . . . , 𝑎𝑛}. In other words,

𝑓𝐴(𝑥) = 𝑥𝑛 − 𝜀1𝑥
𝑛−1 + 𝜀2𝑥

𝑛−2 − · · ·+ (−1)𝑛𝜀𝑛 .

2 That means that the leading coefficient of the polynomial equals 1.
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This is the so-called Vieta’s Theorem for polynomials.
Expression 𝜀𝑘(𝑎1, 𝑎2, . . . , 𝑎𝑛) is clearly, a polynomial of degree 𝑘 in𝑛 variables

𝑎1, 𝑎2, . . . , 𝑎𝑛.
Once again, such polynomials are called symmetric because they are ex-

pressed symmetrically through the variables. This means that their values do
not depend on the order of variables 𝑎1, 𝑎2, . . . , 𝑎𝑛. Therefore, each of these
polynomials is, in effect, a function of collection 𝐴 = {𝑎𝑖}, not just a function of
the ordered sequence of numeric arguments (𝑎1, 𝑎2, . . . , 𝑎𝑛).

Lemma 1. If two collections of 𝑛 numbers 𝐴 = {𝑎𝑖} and 𝐵 = {𝑏𝑖} satisfy
the equalities

𝜀1(𝑎1, 𝑎2, . . . , 𝑎𝑛) = 𝜀1(𝑏1, 𝑏2, . . . , 𝑏𝑛) ,

𝜀2(𝑎1, 𝑎2, . . . , 𝑎𝑛) = 𝜀2(𝑏1, 𝑏2, . . . , 𝑏𝑛) ,

. . .

𝜀𝑛(𝑎1, 𝑎2, . . . , 𝑎𝑛) = 𝜀𝑛(𝑏1, 𝑏2, . . . , 𝑏𝑛) ,

then collections 𝐴 and 𝐵 are identical.
Proof. The equalities above imply that polynomials 𝑓𝐴 and 𝑓𝐵 are the same.

But that means that their collections of roots must be the same as well. ■

We need to prove that for certain values of 𝑛 it is true that knowing collection
𝐴(2) would allow us to uniquely restore the original collection 𝐴.

As the Lemma 1 shows it would be enough to prove that for any index
1 ⩽ 𝑘 ⩽ 𝑛 value 𝜀𝑘(𝐴) can be determined by collection 𝐴(2).

However, it turns out that working with polynomials 𝜀𝑘 is not very easy.
There are other symmetric polynomials which are way more convenient for the
task at hand. They are called power-sum symmetric polynomials 𝜎𝑘:

𝜎𝑘(𝑎1, 𝑎2, . . . , 𝑎𝑛) = 𝑎𝑘1 + 𝑎𝑘2 + · · ·+ 𝑎𝑘𝑛 .

We are learning new techniques and skills which should en-
able us to move around the swamp with ease. They are
more technically demanding, but at the same time they
allow us to get to the places we could not reach before.

Lemma 2. Elementary polynomials 𝜀𝑘 can be expressed as functions of
power-sum polynomials 𝜎𝑘 and vice versa.

https://en.wikipedia.org/wiki/Vieta's_formulas
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Example. Consider case 𝑛 = 3, variables 𝑥, 𝑦, 𝑧, and symmetric polynomials

𝜀1 = 𝑥+ 𝑦 + 𝑧 , 𝜀2= 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 , 𝜀3 = 𝑥𝑦𝑧 .

𝜎1 = 𝑥1 + 𝑦1 + 𝑧1 , 𝜎2 = 𝑥2 + 𝑦2 + 𝑧2 , 𝜎3 = 𝑥3 + 𝑦3 + 𝑧3 .

Then it is very easy to verify the identities

𝜀1 = 𝜎1 , 𝜀2 =
1

2
(𝜎2

1 − 𝜎2) , 𝜀3 =
1

6
(𝜎3

1 − 3𝜎1𝜎2 + 2𝜎3) .

Proof. We will leave the general case to you as an exercise. Or you can
simply read about it in almost any introductory book dedicated to polynomials
or higher algebra (on the internet you can also go to Wikipedia page on the
so-calledNewton’s Identities). ■

Lemma 3. For 1 ⩽ 𝑘 ⩽ 𝑛 value 𝜎𝑘(𝐴(2)) can be expressed by the following
formula

𝜎𝑘(𝐴
(2)) = (𝑛− 2𝑘−1)𝜎𝑘(𝐴) + 𝑃 (𝜎1(𝐴), . . . , 𝜎𝑘−1(𝐴)) , ⟨*⟩

where𝑃 is some expression (actually, a polynomial) in values𝜎1(𝐴), . . . , 𝜎𝑘−1(𝐴).
For 𝑘 = 1 polynomial 𝑃 is a zero function.

For example, if 𝑘 = 1, then, obviously,

𝜎1(𝐴
(2)) =

𝑛∑︁
𝑖<𝑗

(𝑎𝑖 + 𝑎𝑗) = (𝑛− 1)
𝑛∑︁

𝑖=1

𝑎𝑖 = (𝑛− 1)𝜎1(𝐴) .

Similarly, for 𝑘 = 2 we have the identity

𝜎2(𝐴
(2)) =

𝑛∑︁
𝑖<𝑗

(𝑎𝑖 + 𝑎𝑗)
2 = (𝑛− 1)

𝑛∑︁
𝑖=1

𝑎2𝑖 + 2
𝑛∑︁
𝑖<𝑗

𝑎𝑖𝑎𝑗

= (𝑛− 1)
𝑛∑︁

𝑖=1

𝑎2𝑖 +

(︃
𝑛∑︁

𝑖=1

𝑎𝑖

)︃2

−
𝑛∑︁

𝑖=1

𝑎2𝑖 = (𝑛− 2)𝜎2(𝐴) + 𝜎2
1(𝐴) ,

which is not very difficult to prove.
Proof. Now use the Newton’s binomial formula to prove the lemma for all

greater values of 𝑖. ■

https://en.wikipedia.org/wiki/Newton's_identities


16 Math Problem Solving as a Quest

Hence, if 𝑛 is not a power of 2, then coefficient 𝑛−2𝑘−1 in ⟨*⟩ never vanishes
(it never equals zero). Therefore, step by step, we can determine all the values
𝜎𝑘(𝐴) based on the set of values 𝜎𝑘(𝐴(2)). Therefore, it follows from Lemma 3
that for every number 𝑛 which is not a power of 2, collection 𝐴 can be uniquely
restored from collection 𝐴(2).

After this you will have solved the originalMoser’s Problem.

The last two steps were not easy to prove. However, once we
started using the “symmetric polynomials” tool, it was relatively
easy to see that these steps were necessary for our solution.
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Problem Set #2

This set of questions is significantly more difficult then the first one.

Given collection 𝐴 of 𝑛 numbers we will call the sum of some 𝑠 different
elements of that collection3 an 𝑠-sum of collection 𝐴.

Here are a few examples for collection {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7}:

3-sums : 𝑎2 + 𝑎4 + 𝑎7 , 𝑎1 + 𝑎5 + 𝑎7 , 𝑎4 + 𝑎5 + 𝑎6 , 𝑎3 + 𝑎4 + 𝑎6 .

4-sums : 𝑎1 + 𝑎2 + 𝑎5 + 𝑎7 , 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 , 𝑎3 + 𝑎5 + 𝑎6 + 𝑎7 .

Generalized Moser’s Problem. Let 1 ⩽ 𝑠 ⩽ 𝑛 be two natu-
ral numbers. For any given collection 𝐴 of 𝑛 numbers we can
generate the collection of all 𝑠-sums of elements of 𝐴 (there are(︀

𝑛
𝑠

)︀
= 𝑛!/𝑠!(𝑛 − 𝑠)! of them), which we will denote by 𝐴(𝑠).
Is that operation reversible? In other words, given the
collection 𝐴(𝑠), is it always possible to determine collec-
tion 𝐴? Or, using more formal language, is it true that

∀𝐴,𝐵 ⊂ R |𝐴| = |𝐵| = 𝑛 , 𝐴(𝑠) = 𝐵(𝑠) ⇒ 𝐴 = 𝐵 ?

3 They can be equal as numbers but they must be different as elements of 𝐴.
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Let us call pair (𝑛, 𝑠) singular if the above statement is false. For instance, it
is pretty obvious that pair (3, 3) is singular. Indeed, it is impossible to restore a
3-collection if you only know the sum of its three elements.

On the other hand, pair (5, 4) is not singular, because adding up all 4-sums
of a collection of five numbers allows us to find the sum 𝜎 of those five numbers.
Then we simply subtract all 4-sums from 𝜎 to obtain the five original numbers.

We have already solved the Generalized Moser Problem for 𝑠 = 2, and now
we would like to try and find a solution for other specific values of parameter 𝑠.

Let us investigate 𝑠 = 3. Then the version of Lemma 3 for 𝑠 = 3 reads as
follows.

Lemma 3′. For 1 ⩽ 𝑘 ⩽ 𝑛 value 𝜎𝑘(𝐴(3)) can be expressed by the following
formula

𝜎𝑘(𝐴
(3)) =

1

2

(︀
𝑛2 − 𝑛(2𝑘 + 1) + 2 · 3𝑘−1

)︀
𝜎𝑘(𝐴) + 𝑃 (𝜎1(𝐴), . . . , 𝜎𝑘−1(𝐴)) ,

where𝑃 is some expression (actually, a polynomial) in values𝜎1(𝐴), . . . , 𝜎𝑘−1(𝐴).
For 𝑘 = 1 polynomial 𝑃 is a zero function.

C.1. For 1 ⩽ 𝑘 ⩽ 𝑛 prove that polynomial

𝑝𝑘(𝑛) = 𝑛2 − 𝑛(2𝑘 + 1) + 2 · 3𝑘−1

has integer roots if and only if 𝑘 ∈ {1, 2, 3, 5, 9}. That is, the only polynomials
𝑝𝑖 with integer roots are

𝑝1(𝑛) = (𝑛− 1)(𝑛− 2) ,

𝑝2(𝑛) = (𝑛− 2)(𝑛− 3) ,

𝑝3(𝑛) = (𝑛− 3)(𝑛− 6) ,

𝑝5(𝑛) = (𝑛− 6)(𝑛− 27) ,

𝑝9(𝑛) = (𝑛− 27)(𝑛− 486) .

This is very different from the original problem. Instead
of dealing in some combinatorial arithmetic we are now
exploring polynomial algebra and number theory. In
other words, we find ourselves in a completely differ-

ent swamp, which requires its own set of tools and skills.
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We, of course, can discard the roots of polynomials 𝑝𝑘 which are less than 3.
Obviously, pair (3, 3) is singular. The only other possibly singular pairs of form
(𝑛, 3) are (6, 3), (27, 3), and (486, 3).

C.2. Find two different 6-collections 𝐴 and 𝐵 such that 𝐴(3) = 𝐵(3).

Begin with one single step (finding two different
3-collections with the same property). From that
point you need to come up with one more jump.

This statement can be generalized as follows.

C.3. Prove that if 𝑛 = 2𝑠, then there exist two different 𝑛-collections 𝐴 and
𝐵 such that 𝐴(𝑠) = 𝐵(𝑠).

Use the same sequence of “moves” as in the previous quest.

The following is a very hard question to solve without help of a computer.
However, it becomes relatively easy once we are allowed to use some computa-
tional package such as Matlab, Mathematica, or SageMath.

C.4. (a) Find two different 27-collections 𝐴 and 𝐵 such that 𝐴(3) = 𝐵(3).
(b) Find two different 486-collections 𝐴 and 𝐵 such that 𝐴(3) = 𝐵(3).

Unless you expand your toolkit (using computers) this is
extremely difficult to do. Not impossible, but very, very difficult.

C.5. Formulate and prove version of Lemma 3 for 𝑠 = 4, with the coefficient
at 𝜎𝑘(𝐴) being equal to the polynomial

𝑝𝑘 =
1

6

(︀
𝑛3 − 𝑛2(3 · 2𝑘−1 + 3) + 𝑛(2 · 3𝑘 + 3 · 2𝑘−1)− 6 · 4𝑘−1

)︀
.

This quest is basically identical to one of those we did
before. It only requires a bit more technical prowess.
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C.6. For 1 ⩽ 𝑘 ⩽ 𝑛 prove that polynomial

𝑛3 − 𝑛2(3 · 2𝑘−1 + 3) + 𝑛(2 · 3𝑘 + 3 · 2𝑘−1)− 6 · 4𝑘−1

has integer roots if and only if 𝑘 ∈ {1, 2, 3, 4, 5, 6, 7}. That is, the only polyno-
mials 𝑝𝑖 with integer roots are

𝑝1(𝑛) = (𝑛− 1)(𝑛− 2)(𝑛− 3) ,

𝑝2(𝑛) = (𝑛− 2)(𝑛− 3)(𝑛− 4) ,

𝑝3(𝑛) = (𝑛− 3)(𝑛− 4)(𝑛− 8) ,

𝑝4(𝑛) = (𝑛− 4)(𝑛2 − 23𝑛+ 96) ,

𝑝5(𝑛) = (𝑛− 8)(𝑛2 − 43𝑛+ 192) .

𝑝6(𝑛) = (𝑛− 12)(𝑛2 − 87𝑛+ 512) .

𝑝7(𝑛) = (𝑛− 8)(𝑛2 − 187𝑛+ 3072) .

Here you need to make use of another help-
ful tool—namely, modular arithmetic.

C.7. Find two different 12-collections 𝐴 and 𝐵 such that 𝐴(4) = 𝐵(4).

Once again, very hard to do without computers.

C.8. If 𝑛 > 4, 𝑛 ̸= 8 and 𝑛 ̸= 12, then collection 𝐴 of 𝑛 numbers can always
be uniquely recovered from collection 𝐴(4).

This one is a direct corollary of the com-
bination of several previous problems.

C.9. If 𝑛 > 5, 𝑛 ̸= 10, then collection𝐴 of 𝑛 numbers can always be uniquely
recovered from collection 𝐴(5).

This one is quite tough. It requires almost all of the tools and
skills used in the solutions to the problems from this section.

https://en.wikipedia.org/wiki/Modular_arithmetic
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Unsolved Problems

There are several very challenging unsolved questions and conjectures related to
the Generalized Moser’s Problem, including the general case of GMP itself.

D.1. The Generalized Moser’s Problem. As of March 2024, GMP remains
unsolved for 𝑠 ⩾ 6.

This quest is likely to be as difficult as many other well-
known problems in number theory and higher algebra (in-
cluding the ones offered more than a hundred years ago).

For arbitrary value of 𝑠 the following version of Lemma 3was proved in 1962
by B. Gordon, A.S. Fraenkel, and E.G. Straus:

Theorem. For 1 ⩽ 𝑘 ⩽ 𝑛 value 𝜎𝑘(𝐴(𝑠)) can be expressed by the following
formula

𝜎𝑘(𝐴
(𝑠)) = 𝐹𝑠,𝑘(𝑛)𝜎𝑘(𝐴) + 𝑃 (𝜎1(𝐴), . . . , 𝜎𝑘−1(𝐴)) ,

where𝑃 is some expression (actually, a polynomial) in values𝜎1(𝐴), . . . , 𝜎𝑘−1(𝐴),
and 𝐹𝑠,𝑘(𝑛) is a polynomial of degree 𝑠− 1 in variable 𝑛 which can be expressed
by the formula

𝐹𝑠,𝑘(𝑛) =
𝑠∑︁

𝑚=1

(−1)𝑚−1𝑚𝑘−1

(︂
𝑛

𝑠−𝑚

)︂
.

Polynomials 𝐹𝑠,𝑘 are called Moser polynomials, and the existence of their integer
roots, as we now know, has direct relevance to the GMP.
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* * *
The following conjecture, if proved, would allow us to resolve GMP for many

small values of parameter 𝑠.

D.2. (k-max Conjecture) If 𝑘 ⩾ 2𝑠, then polynomial 𝐹𝑠,𝑘 does not have
integer roots.

At least in this case the fog does not seem
to be as thick as it is in the GMP quest.

D.3. (Triplet Conjecture) If 𝑠 > 2 and 𝑛 > 2𝑠, then it is not possible to find
three pairwise different 𝑛-collections 𝐴, 𝐵, and 𝐶 , such that

𝐴(𝑠) = 𝐵(𝑠) = 𝐶(𝑠) .

I have no idea about the difficulty of this one.

* * *
For more details and more interesting problems, the readers are encouraged

to review article https://arxiv.org/abs/1709.06046.

https://arxiv.org/abs/1709.06046
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Conclusion

The Swamp Quest is NOT a problem solving method. It is merely a useful visual
guide. Basically it provides you (or your teachers) with another interesting
way to approach the entire challenging process of extracurricular mathematical
education and math problem solving.

You can also use the Quest as a motivational tool. There are numerous
analogies which you can use here—from bodybuilding to school sports to video
games.

An obvious example: not knowing the next step of the solution is similar to
the feeling of being lost when a thick fog envelopes your little islet.

Another one: knowing what needs to be done but being unable to do so is
very similar to seeing the next islet but not having enough strength or skills to
make the necessary jump.

The Quest helps to remind us that some things in life should not be discarded
just because they are difficult. Many quests (or math problems) are easy and can
be done within a few minutes. Others are not more difficult to figure out but
simply take longer, because they involve several relatively easy steps. And other
quests may take several hours or days to finalize because they require coming
up with new, uncommon ways to overcome their obstacles.

And, of course, there are quests which can take years or even a lifetime—
but we do them because they present challenges as riveting and fascinating as
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climbing Mount Everest, or conquering Venus and Mars. They teach us many
lessons, one of which is that the worthwhile challenges should not be abandoned
even if we sometimes cannot clearly see our way in the fog surrounding us.

* * *
So, when you get bored in the class solving countless nearly identical

quadratic equations, tell yourself something like:

This is my gym practice! a I am doing hundreds and thousands
of squats and curl-ups to build up my muscles so that later it
will be easy for me to jump from one swamp islet to another.

a If you are a video game aficionado, then this is your grind.

When your teacher recommends you a book or another resource to read, tell
yourself:

This is my power-up! I am reading this book to acquire a very spe-
cific tool or a skill, so that later I will be able to see through the

fog, or to soar above the swamp, or perhaps even to walk on water.

And when someone asks you how you managed to solve a difficult problem
while others had no clue, you can give them this answer:

I have spent hundreds (or even thousands) of hours in the gym
(or practicing various levels of the game), learning how to

use new tools and skills I acquired. No wonder that now I see
things clearer, and I know more about how to attain my goals.


